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EE New expansions for the Legendre functions P;™(z) and Q;™(z) are obtained; m and n are large

positive numbers, 0 <m <n and o =m/(n+1}) is kept fixed as n—>0c0; z is an unrestricted complex
variable. Three groups of expansions are obtained. The first is in terms of exponential functions.
These expansions are uniformly valid as n—c0 with respect to z for all z lying in %z > 0 except for the
strips given by | £z| <6, Zz <+ 8, where 6>0 and § = /(1 —«?). The second set of expansions
is in terms of Airy functions. These expansions are uniformly valid with respect to z throughout
the whole z plane cut from +1 to —oo except for a pear-shaped domain surrounding the point
z=—1 and a strip lying immediately below the real z axis for which | #z| <f+4, 0>52z> 6.
The third group of expansions is in terms of Bessel functions of order m. These expansions are valid
uniformly with respect to zover the whole cut z plane except for the pear-shaped domain surrounding
z=—1. No expansions have been given before for the Legendre functions of large degree and
order. ' ’

1. INTRODUCTION AND SUMMARY

/ \

2 This paper is concerned with the investigation of the solutions of the differential equation

> d%w dw m?

2: (l—zz)d—?—-Qza—z—{—{n(n—f—l)—1_22}10:O, (1-1)
)

E 8 in the case when m and n, with 0<<m < n, are large positive not necessarily integral numbers
A and z is an unrestricted complex variable. The equation (1-1), known as Legendre’s

= P q g

equation, occurs in potential theory and in other branches of applied mathematics; a know-
ledge of the behaviour of its solutions for large values of its defining parameters is therefore
of interest.

We take as the fundamental system of solutions of (1-1) the functions P;™(z) and Q;™(z),
known respectively as the Legendre functions of the first and second kind of degree z and

T Based partly on research prepared under contract Nonr-220(11) between the U.S. Office of Naval
Research and the California Institute of Technology, reference no. NR 043-121.
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598 R. G. THORNE ON THE

order m (MacRobert 1947, p. 122). Hobson’s definitions of these functions will be used (see
§2). Then Pf™(z) and @QF™(z) are single-valued analytic functions in the z plane cut along
the real axis from + 1 to —o0, and are real when zis real and z>>1. Except where otherwise
stated we take |argz|<wm, |arg(z+1) |<w. The equation (1-1) has regular singularities
atz=1,z=—1, |z| =c0. When 0<m<n, P,™(z) is the only solution of (1-1) which is
bounded at z = 1 (but see (2-1)) ; @, ™(z) is bounded at infinity. Thus in this paper detailed
discussion is restricted to the functions P;™(z) and Q;™(z). Properties of P7(z) and Q™(z)
can be easily deduced using the connecting formulae (2:12) and (2-13). For z = x where
—1<x<1, the fundamental solutions of (1-1) are taken as P,™(x) and Q;,™(x) defined in
(2-2) and (2-3); these functions are described as Ferrers’s functions (but see §2), and
are used in many branches of applied mathematics. They are real for these values of x.
Normalizing (1-1) we conclude that the differential equation
2 2_

So_ploh, et *
has the solutions (z2—1)% P;m(z), (22—1)} Q;™(z2).

In this paper asymptotic expansions for the functions P,™(z) and @, ™(z) (and thence for
P;™(x) and Q;"(x)) are derived. The expansions are valid uniformly with respect to z
throughout certain domains in the cut z plane as m—co and n—c0 where 0<m<n and
0<a<l, a =m/(n+%}) and « is kept fixed; the author surmises that the expansions are
probably valid for those values of m for which An~*<a<1— Bn~*; A>0, B> 0. The method
adopted to obtain the expansions is that developed by Olver (19546) and is based upon the
consideration of equation (1-2), using the well-known idea that approximately identical
differential equations have approximately identical solutions. In a recent paper (Thorne
19574, hereafter referred to as I) the conditions under which Olver’s theory can be applied
to (1-2) when m and n satisfy the above conditions were investigated (I, §5). It was shown
that if we set u = n+%, m = au, a fixed as u—>00 and 0<a <1, so that (1-2) becomes

2 2__f2 2

g_;'zl")z ‘(§2~f)2”2”4(i2__,-_?1’)2}wa (1-3)
where § = /(1 —a?), it is possible to obtain asymptotic expansions for P;™(z) and @;™(z)
which are valid uniformly with respect to z, as u—0c0, for z lying in a domain D, say, in
which the points z = 1, z = #+i0 are interior points and which extends to infinity. These
expansions are in terms of Airy functions. The points z = —f, z=—1, z = f—10 do not
lie in D, and the expansions are not valid in the strip 0> #z> — 4, #z<f+9 (§>0). These
Airy-type expansions form the second of the three groups of expansions derived in this
paper. We shall now discuss some of the properties of these expansions.

The form (1-3) of the equation (1-1) is relevant to each of these three groups of expan-
sions. The coefficient of #2w in (1-3) has simple zeros at z = 4§, and these points are known
as turning points of (1-3). The equation also has regular singularities at z ==+1, |z | = 0.
The turning points and singularities are significant in the determination of the asymptotic
character of the solutions of a differential equation.

First, in § 3, we restrict the consideration of equation (1-3) to the domain Z, say, con-
sisting of the half-plane %z > 0from which have been removed the strips | Sz | <4, #z<f+0
(8>0). In Z” (1-3) has two regular singularities and no turning points. Now the equation
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 599

satisfied by exp (£ #£) has no turning points in the § plane, and has an irregular singularity
at infinity. From the theory developed by Olver (19544, theorem A), we then deduce in
§3 that the Legendre functions have asymptotic expansions, as #—>c0, in terms of the
exponential functions exp ( 4-u4£) where {=£(z). These expansions are valid uniformly with
respect to zin Z (and sometimes in larger domains), but are never valid at the turning point
z = fi. These exponential-type expansions form the first of the three groups of expansions
of this paper.

It is not possible to obtain asymptotic expansions which are valid at a turning point and
are in terms of exponential functions, but Olver (19545), following earlier writers, has shown
that under these circumstances it is convenient to use Airy functions. These functions satisfy
the differential equation

dazw

T u¥ W, (1-4)

which has a single turning point at { = 0. Now the functions P; m(z) and Q;™(z) take on
different values at the two points z = f+i0 and z = #—i0, and so these points are effectively
two distinct turning points of the Legendre functions, and since (1-4) has only one turning
point, we see why the Airy-type expansions mentioned above are valid at z = #4i0 but
are not valid at z = f—i0. The existence of the Airy-type expansions was proved in I, § 5,
but no attempt was made to derive them. They are obtained in § 4 of this paper.

When there are two turning points for a differential equation asymptotic expansions in
terms of Airy functions for the solutions of the equation will not be valid at both points, but
in the preceding paper (Thorne 19575) it was shown that under certain circumstances,
when the two points are separated symmetrically by a regular singularity of a particular
kind, it is possible to obtain expansions valid at the two turning points and at the singu-
larity. These expansions are in terms of the Bessel functions I,,(uf), K,,(ut) and #1 (ut),
t*K,,(ut) are solutions of the differential equation

2 2 »
g-tézy={u2(1+;i2) ~le}y, (1-5)
where m = au. The equation (1-5) has two turning points at # = +ix, a regular singularity
at? = 0 and an irregular singularity at infinity. We show in § 5 that (1-5) is a suitable equa-
tion for comparison with (1-3) and the points z = f+i0, z = 1 correspond to the points
t = +ia, t = 0 respectively. We then deduce that there exist asymptotic expansions for the
Legendre functions in terms of the Bessel functions which are uniformly valid, as z—>o0,
in a domain which extends to infinity and in which z = 1, z = £4-10 are interior points.
These expansions are thus valid in a domain larger than that for the Airy-type expansions
of §4. The Bessel-type expansions form the last of the three groups of expansions in this
paper. :
Except for a single-term approximation of Jeffreys, discussed in § 3, no expansions have
been given previously for the Legendre functions of large degree and order. However,
expansions for which the order 7 is fixed and the degree # is large have been given before;
these are discussed in § 6; they are in terms of Bessel functions of fixed order.
Summary. Relevant properties of the Legendre functions are given in §2. In §3 Olver’s
theory (19545, § 5) is applied to obtain elementary asymptotic expansions for the Legendre
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600 R. G. THORNE ON THE

functions. These are in terms of exponential functions and are given in (3-18) and (3-19).
Expansions for the derivatives of the functions are given in (3-32) and (3:33), and expan-
sions for the Ferrers functions in (3-28) to (3-31) and (3-35) to (3-38). The Airy-type expan-
sions are derived in §4, and are given in (4-19), (4-20), (4-22), (4-23) and (4-26). Finally,
in § 5 Bessel-type expansions for P;™(z), ,™(z) are developed. These are given in (5-17)
to (5-21). Previous results and concluding remarks are given in § 6. Throughout this present
paper, the preceding paper (Thorne 19575) is referred to as II.

2. RELEVANT PROPERTIES OF THE LEGENDRE FUNCTIONS

Hobson’s definitions of the Legendre functions P, ™(z), @;™(z) are used (Hobson 1931,
pp- 188, 195). These definitions are in terms of contour integrals and are valid for un-
restricted values of m and #. When m is a positive integer and z lies in the cut plane we have
(Hobson 1931, pp. 187, 194, 205),

dm P,(z)

Pp(z) = (- )im P BE)  gnis) = (21l
; (2-1)
Pom(z) = pr T { PG, |

When m is not an integer P,;™(z) and P7(z) are linearly independent (see (2:7)), but
@, ™(z) is a linear multiple of Q™(z) for all m (see (2:10)).
For z = x, — 1 <x<1, the fundamental solutions of (1:1) are taken as P, ™(x) and Q;™(x)
defined by the relations
Pom(x) = eFimmi Prm(x £ i0), (2-2)
2e~mmi Qm(x) = ebmmi Qrm(x4-10) 4 e~ i Q™ (x —10), (2-3)

where f(x+10) = lim f{x +i¢), ¢>0. Also
>0

—ime~mmiPym(x) = elmni Q;™(x+i0) — e—dmmi Q; ™(x—1i0). (2-4)

The expressions (2:2), (2-3) and (2-4) are given in Hobson (1931, pp. 227, 229 and 228
respectively). From (2-3) and (2-4) we deduce that

Q" (x) = edmmi Qrm(x+10) 4 Fim Py ™ (x). (2:5)
When m is a positive integer |
Pp(x) = (—1)m (1—e2)m T _ (ym 7,
. (26)
Qi) = (—1)m (12T %) ().

Both pairs of functions P, Q™ and 7™, U™ have been described as Ferrers’s functions (see
MacRobert 1947, p. 307; Erdélyi 1953, p. 179 and Whittaker & Watson 1920, p. 323);
we shall be dealing only with the functions P;” and Q3™ in this paper. For the Ferrers
functions we follow the notation introduced in Erdélyi (1953, chapter 8); this avoids the
confusion resulting from Hobson’s use of the same symbol to denote P;™ and P, ™. The
Ferrers functions, defined originally when z = x is real and |x|<1, can be continued
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 601

analytically on to the z plane so that P¥”(z) and Q%™(z) are single-valued analytic functions
of z on the whole z plane cut, in this case, along the real axis from +1 to +oo and from —1
to —oo. They are real when zis real and |z | <1. :

For |z—1|<2

P;m(z)zr(mlH)(;D Fl—nn+1;m+1; 3—12), (2+7)

and for |z|>1
D(n+1) T(n—m-+1) (22—1)#n

e Qim(2) = 2" F(bn—dm+ 1 dn—dm+E5n+85). (29)

I'(2n+2) zZn—m+1
For all values of z
i
Pym(z) = oS nn{Sin (n—m) mQ;™(z)y —sin (n+m) 7Q=1"_(2)}, (2-9)

me ™ ([n—m4-1)

o r +1
Qun(z) = 2sinmm \['(n+m-+1) o

an()

Pr(2) -,—P;;'"(z)}: ¢ (2:10)

The formulae (2:7) to (2:10) can be found in Hobson (1931, pp. 188, 195, 204, 204, 196
respectively). Finally, we have as z— 0410, from Erdélyi (1953, 3-2 (40)),

Jﬂe ’}(n+m+l)1ril‘(_§n %m—}»%)
2m 1l (dn+4m+1)

Q"(z) = +0(2). (2-11)
Continuation Jormulae
For all z there exist the continuation formulae (Hobson 1931, p.-207),

Pym(—2) = €% Pyn(z) —2sin (n—m) menmt Qm(z), (2:12)

Qrm(—z) = —etmmiQrm(z), (2:18)

where the upper and lower signs are taken according as #z>>0 or £z < 0. These expressions
can easily be extended. Let z circulate the origin and cross the cut —o0<z< —1 but not
cross the cut —1<z<1. Then from (2-8) and (2-9) we deduce that

Q;m(zerm) = erwtmi Q=m(z),
2isin (n—m)

P;m(zerm) = g P;m(z) -

sinr(n+3%) arem—tnai Q;m( z),} (2-14)

where 7 is an arbitrary integer.
~ If z circulates around the point z =1 and does not cross the cut —o0 <z< —1, we can
write z, = 1+ (z—1) e, where | arg (z—1) | < and s is"an arbitrary integer. Then from
(2'7) and (2-10) it follows that

Prm(z,) = emmi Prm(z), }

N e 215
Q,™(z,) = esmmi Qm(z) —im e~ sin smm cosec ma P, ™(z). (215)

The function Q™(z,1—) defined in Erdélyi (1953, p. 142) corresponds to (2-155) with
s=—1.

74 Vor. 249. A.
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Asymptotic formulae for gamma functions

Stirling’s series gives, for large values of ,

e*I'(1+4u) )
| In {u“J(%ru)} ~R, | | (2:16)
where R, is a series consisting solely of terms of odd positive powers of #~!1. Also for large
values of z, "
1ol —z S
In{I'(z+14)} 2ln2ﬂ+zlnz 2= 519> T8 3602 "

and hence if 4 = n+4} and m = au, it follows that for large values of u,

F(n—m+1) 2m  a  To(a?+3)
MmN o  ase0ps
~—2mlIn— p—l—T (2:17)
where p = y?(14+y)"177, y = }(¢~1—1) and T, consists only of odd positive powers of u~1.
Finally, I'(2) T(1—2) = mcoseczm, 2%-10(z) T(z+13) = Jn[(22). (2:18)

3. EXPANSIONS FOR THE LEGENDRE FUNCTIONS IN TERMS OF EXPONENTIAL FUNCTIONS

In this section we derive asymptotic expansions for the Legendre functions which are
valid uniformly with respect to z in a domain which extends to infinity and in which z = 1
is an interior point; the expansions are in terms of exponential functions. The functions
(z22—1)} P(z), (22—1)} Q7(z) are solutions of the differential equation (1-3). The coeffi-
cient of #?w in (1-3) has double poles at z = 4-1, and simple zeros at z = 4 f; the equation
has a regular singularity at infinity. Let Z, be the half-plane |argz |<}n, cut from z = 0
to z=1, and let Z, =Z,—A,, where A, is a small yet finite region surrounding z = f
consisting of two partsA,, and A,_ on the upper and lower side of the cut on the real z axis.
Then the coefficient of #%w in (1-3) has a double pole in Z at z = 1, and is non-zero, except
at infinity, elsewhere in Z. Thus the equation (1-3) considered in the domain Z/, is a par-
ticular example of a type of equation, described as case G, which has been investigated by
Olver (19545, pp. 309, 313). Quoting the result contained in his theorem A (Olver 19545,
§5), we deduce that there exist expansions for solutions of (1-3), as u—00, valid in sub-
domains of Z’, in which z = 1 is an interior point. We shall now obtain these expansions
and show that they are also valid for unbounded values of |z| in Z. Introducing new
variables W, { (Olver 1954, (2-4)) by the relations

di\?_ 22—p” (G 5 ,
(E{Z) “@-nr = (dg) RN (3-1)
we find that W(£) satisfies the equation
dazw
agz = WM, (3-2)
where O =428t (T (3:3)

(see II, (22))
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 603

Under the z-{ transformation the domain Z, becomes a domain Z,, say, in the £ plane.
We choose the positive sign in taking the square root in the first part of (3-1), and an
integration constant is added so that Z; is symmetrical about the real § axis. As in previous
papers we use subscripts for domains and points to indicate the particular complex plane
under consideration; thus Z, and Z; refer to corresponding domains in the z and § planes.
From (3-1) we deduce that

£= —,0+-%i0£17,
z 2__ 2 ’
where p=— ﬂ“ﬁzz?_—f—)dz = acosh‘l{m%z_—zz)}——cosh’lg,, (3-4)
2__p2 2__ 42
= atanh‘l{“/————m(z A )}—tanh‘l{————“/(z A )}; (3-5)
az z
22—=1 o 4
S) = W’s{z (402 —1) 4 (1—af)}. (3-6)
i G
Liam 5
4 P H
~ Liow B,
—-—%iﬂc G,
Ficure 1. z plane. Ficure 2. £ plane.

In (3-4) and (3-5) we specify that for z real and z>1, arg(l+z) =argz=0 and
arg (z72—1) = —n. For z elsewhere on the cut plane appropriate values of the arguments
are given by continuity from these values. The z-p transformation is discussed in more detail
in §4 and we state the following results here. The domain Z, consists of Z2£<0, | #& | < }am,
together with Z£>0, | FE|<§n. Then Z; = Z,—A,, where A, corresponds to A, and consists
of A;, and A;_ centred respectively on § = +}iam; for simplicity we suppose that A,, and
A,_ are portions of squares, centred respectively on }iam and — }iam, having sides of
length 20>0, where d<min {jam, §(1—a)n}. Let R, denote the two strips 0<<ZE<F,
fam+0<| FE|<dm and let Z; = Z;—R,. These domains are shown in figures 1 and 2.
Using the logarithmic form of (3-5), we deduce that as | z | >o00

RE—~0, z~3rfel, where Inr=alnf-1(1+«), (3-7)

and as |z|—>1
RE—>—00, (z—1)~3p2exp (207%), p asin (2:15). (3-8)
Thus we conclude from (3-6) that f(£) is a regular function of ¢ throughout Z; and
JE) = O(]£]7?) as | £| >0 in Z;. Thus f(£) satisfies in Z; all the preliminary conditions for
the application of theorem A of Olver (19545) concerning the asymptotic solutions of
equation (3-2). It is not difficult to show that if we had chosen any other larger parameter
uy, say, where uf = u?—r, where r=0, the function f(£), say, corresponding to f(£) in (3-2)

74-2
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604 R. C. THORNE ON THE

would be such that f,(§) = constant+ O(|£|~2) as |£|—>o0 in Z;; this condition is not
sufficient for the application of theorem A when | £ | +c0 in Z;. We can also deduce that our
choice of zis the correct one from an examination of (4-3), I, § 5, and Olver (1956, appendix).

If we wish we can take Z; to be the domain D of theorem A of Olver (19545), and it
would then be necessary to define a domain D’, lying wholly within Z;, the boundary of D’
consisting of lines drawn parallel to the boundaries of Z;, and at a small distant ¢" ( < 34, say)
from them. Expansions for W(£) of (3-2) would then be derived for £ in D’. But D’ can be
taken, in fact, to be the domain Z;itself, since f{£) satisfies all the conditions of theorem A
in a domain formed from Z; by ‘moving back’, by an amount ¢’ (<44), all the boundary
lines of Z;. Thus we take Z;to be the domain D’ of theorem A. We take the points ¢, and a,
of this theorem to be the points at infinity on the negative and positive real -axes, respec-
tively. The domains D, and D, of theorem A are then Z and Z; respectively.

Thus if functions 7,(§) are defined by the relations

T6) =1, T =—3T10+5[SOTOE (>), (39)

it follows from theorem A that there exist solutions of (3-2), namely W;(£) and W,(£), such
that if §, lies in Z; and &, lies in Z, then for large positive values of ,

L T '
(e ~ea 3 TG, )~ e 3 L0 (310)
and these expansions hold uniformly with respect to £.
The matching of the Legendre functions with W[ (£,) and W,(£,) is completed in the usual
‘way, by the examination of the functions at z =1 ({ = —o0) and |z | =0 ({ = +00), from
(2-7) and (2-8). We deduce from (3-10) that for large values of u

@—p () ~ddaea 3 I0), (3-11)
e (2 1)} Gz~ Joemwi 3 T (312)
o(—4)

where £, lies in Z; and §, lies in Zé’, A, and g, are functions of # only and are yet to be deter-
mined ; this is achieved below by first fixing the integration constants in (3-9). The expan-
sions (3-11) and (3-12) are uniformly valid with respect to z for z, lying in Z; and z, lying
inZ); wehave Z, = Z_,—A, and Z — Z;— R, where R, consists of the two strips | £z | <4,
0<#z<f—9, where §;=4,(5)>0.

We now determine A, #,. Let z—>1, £->—o0 in (3-11) and (3:12). It follows from (2:7),
(2-10) and (3-8) that

P(m1+1) (3p)" ~ A, Z ”‘( OO) ~A, 2 say, (3-13)
Dle—m+1) @2\»  2T(~0) % 7 .
) W) () ~42, T ~ A 319

Now 73(£) =1 and thus In {é‘oys(iu) “‘} ~§lcs(;{:u) =S, say.
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 605
Taking logarithms of (3-13) and (3-14) and adding and subtractlng the two expansmns

we derive
(,‘23 F(n m+1) )
InA,pu,+2 Z I’__-_—(n—}—m-f—l) In m, (3 15)
—2 z ‘2,;;11 In2n+7,+2R,, (3-16)

where R,, and T, are given in (2~16) and (2-17). Since the constants y, are at our disposal,
we can set ¢, = 0 for > 1. All the conditions are now satisfied if we put

S . 3
1 1 {gg:_l_Zii%} :ﬁAua say. (8:17)

The desired expansions are therefore, from (3-11) and (3-12),

Pim(z) ~ A (a2 pr) b 3 T, CED
Qm(z) ~memm A @) teme § L (319)

where z, lies in Z;=17,—-A,—R, and z, lies in Z; = ZZ—AZ, where A, is the region
| #z—f| <), | £z|<d, and R, is | Fz| <8}, 0K Bz<f—8,, §,=0,(6)>0

The functions T (&)

These functions are polynomlals of degree 3s in v, where v = az(z2—f2)~%. This follows

since dv 1

“ﬂz( —1) (®*—a?), f(€) = 052,6’4( —v?) (v*—a?) (502 —1 _0‘2); (3-20)

v2—1) (v2—a?)d7T. 1 (v
and L) - = = e [ G- T vty (321)

Thus if we write d7/d§ = T”, dT/dv = T, we conclude that

T0) =1 2T{® =/, Ti(E) =gz G0 —3(1+aD)
T,= 3T+ [ TiTde+y,

1
- 1152244

' 7 v 1Y N
Ty = =T -4 + BT —g [ fedo+ys

{3850° —462v%(1 +a?) +-v2(81at 4 5222+ 81) — 72a2(1 +a?)},

We can prove that T,,(v) is an even functlon of v and 7),,,(v) is an odd function of ».
To show this, it is sufficient to show that #,,,, = 0, where £, = [T;(v)],~,. Let z—>0--i0
in (3-19) and apply the formulae (2-11) and (2-185). Thus
(-4 ts
sgo (—u)s”

Flu,0)=./(} ﬁ’){ D(antdm ) L(dn— Emﬂ)} (3-22)

D(Gn+-4m+1) D(gn—4m+1)
From (2-18a) we can show that

G(u, ac) Ell’l F(ua “) '—ln F( —U, “) = 11'1 {1 + Sin fﬂ(:i)s(zzé:“uﬂ} ¢
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606 R. C. THORNE ON THE
Now G(u,a) has an asymptotic expansion in ascending powers of #~! valid for |argu | <=.
If u is now chosen so that fu = —a, say, where a is large and positive, it follows that

G(u,a) = 1+ O(e~#1-9). Thus the series on the right-hand side of (3-22) contains only even
powers of u~! and thus #,,,; = 0. Hence

T(—v) = (=1)°Ty(v). (3-23)

When z = x and f<x<1, the points £, , correspond to x-+i0, where

§10 = Xy £ lom, x; = cosh‘lj—;——acosh“l{m%?)}, (3-24)

and T(,,) = Ti(E-) = Ti()s o = ax(x*—f?)%. When z = x and 0<x<f, &, and v,,
correspond to x4-10, where

b =Fi(xatdam), xp= COSf1§~aCOS‘l{/—?—~7—(i‘1‘x—_725}, (3-25)

Vgy = J( ﬂlzocx ) = Fiv,, say. (3-26)

Let '721)(1)2) = 2p(§2—) = 2p(§2+): } (3-27)
and Tops1(v2) = (—1) Tppa(§5-) = iT5p41(E24)-

The functions 7,(£) have singularities at z = £ and Z(v,) are real valued functions.

Expansions for P;m(x), Q,m(x)
These expansions differ according as (i) f+6,<x<1 or (ii) 0<x<f—4;. In case (i)
we apply (2-2) and (2-3) to (3-18) and (3-19) immediately to give

Pon(s) ~ Ayt pr)tem 3 L, (3-28)
Q) (a2t 3 T (329

where A, and x; are givenin (3-17) and (3-24). The expansion (3-19) is valid for 0<x <f—d,
but (3-18) is not valid for these values of x. However, the use of (2-3), (24), (3:19) and
(3-23) give

Py(s) ~ 20, 2 22)Heos (wty—dm) 3 202 sin (uy,— 1) 3 T2, (330

Qn(x) ~ A (52— 32)Hoos (g + 4m) 3 72 2‘( 70 1sin (uy +-4m) 3 i), 3a1)

Expansions for derivatives

Olver’s theory shows that we can differentiate the above expansions with respect to z
in order to obtain expansions for the derivatives of the Legendre functions. Thus

_f42\1

4 pon(z) mun B e 3 T, (3:32)
- s=0

d . Z2__ 42\ © T.’gl)

&Q;m(z2) ~ — 7 e~ m7Ai uAu(_z?;_ﬂ_l_z_e—uézsgo_(—ngi)_, (3.33)
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 607

where T§1)=.’I;—T<%0T l+(v“’—a2) } (3-34)
and for z = x, where f+4§, <x<1, we have
d 2 2 ) T(l)
de"m( ) ~— uAu(x ﬂ) eumsgo uEXI), (3-35)
2 o T
L an(e) ~mut & ’5’) eon 3 T, (3-30)

and when 0<¥<<f—4, we have

0

Pem(s) ~ 2, B fcos —%n)go%“ 2 sin (i) 3 22809 (3.57)

(%Q—nm(x) ~ 2mul\,, (/? ) {cos (uxy—3m) z ( )—}—sm( 1,”)2 2s42—81£:)2)} (3:38)

where g‘(l) = .7' ( l)s 1 _;;)2 {‘2‘02 s—1 -+ (02+d2) d—'j—;;:—l} .

2

Previous results. No asymptotic expansions have been obtained before for the Legendre
functionsof large degree and order. Single-term approximations for P;”(x) have been given
in Jeffreys & Jeffreys (1950, p. 658). By applying Stirling’s formula to A, it is possible to
show that the leading terms of (3-28) and (3-30) are identical with these approximations.

Conclusion. The expansions (3-18) for P, (z) and (3-32) for d{P;™(z)}/dz are valid uni-
formly with respect to z everywhere in the cut half-plane £z>0 except for the domain A,
surrounding z = fand the strip | fz | <4;, 0< Zz<f—4,. The expansions (3-19) and (3-23)
for @, ™(z) and its derivative are valid, however, in the whole cut half-plane except for the
domain A,. Expansions on the cut 0<x<f—4,, #+8,<x<1 have also been derived. For
other ranges of arg z, the continuation formulae (2:14) and (2:15) can be used.

N

4. EXPANSIONS FOR THE LEGENDRE FUNCTIONS IN TERMS OF AIRY FUNCTIONS

The expansions developed in this section are obtained from an examination of the
equation (1:3), as was the case with the exponential-type expansions of § 3. The coefficient
of «?w in (1:3) has double poles at z = 41, the point at infinity is a regular singularity of
(1:3) and the points z = + 4 are turning points of (1-3). At these turning points the value of
dz/d€ in (3-1) becomes infinite. Since the z plane is cut from +1 to —oo, the equation (1-3)
is a particular example, as was mentioned in § 1, of a differential equation considered in an
earlier paper (I, §5). To obtain expansions valid at the turning point z = #+i0 we make
the z-{ transformation (see I, (25))

dz z2—1 dz\ -
™ “J(zz—ﬂz) g, W= (d_é) v

. (4-1)
= —&tpior =[50 az (- qny,

where p and £ are the same as in (3-4). The lower limit of the integral is £+10. Then W({)
satisfies the equation &Ew

W@ = RO, (+2)
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608 R. C. THORNE ON THE

where, if f(§) is the function given in (3:7),

£ = 1gm+A©

~Top i )+ 00 =

The z-{ transformation (4-1)

Before asymptotic solutions of (4-3) can be investigated it is first necessary to examine
the region in the { plane corresponding to the cut z plane, and then secondly to examine the

behaviourof 7, (¢) in thisregion. To examine the z- transformation we set (see (3-4) and (3-5))

A=2%(z2—1)"%, p=acosh1A—cosh™1Z, (4-4)
g g

Let I, denote the quadrant #£z>0, £z>0 in the cut z plane; and in this cut plane let
I,,,I,,,I,, denote the three other quadrants (in order) reached from I, , by a counterclockwise
rotation about the origin. Let I, denote the cut z plane. Then I, and I,, are the quadrants
Z1=>0, F1>0 and ZA1<0, FA>0 respectively, with a cut E, F, Hy A, from af~'et™ to
oo et7i, I, and I, are the same quadrants as I}, and I, and are taken as lying on a sheetof a
Riemann surface reached from I,, by crossing H, 4, from the right as indicated by the
broken lines in figure 4. I,, is the strip 2p<0, —}n(1—a)<.Fp<}am together with the
strip Z2p>0, 0< Fp<jam. I, is the reflexion of I, , in the line #p = —§(1—a)mand I, ,
I, are the reflexions of I, , I, , in that order, in the line #p = fan. Finally, I, is mapped
conformally into a domain in the { plane consisting of a region bounded by the curves
(figure 6) 4, Qy, Q¢ Fy, Fi¢ Q1 Q1¢ B1g Big Ay, together with the strips I, and Ly, say, bounded
respectively by E; Q, D, E,and E,; Q,, D, E, . The curves F; @ and Fy, @, arerepresented by

¢ = (at+idmP}  (0<t<w), (45)

where ¢ =—1 and d=—(1—3}«), +(1+4%a) respectively. For the curves Q.E,, E D,,
A.By,, D E,, E,;Q,, we have ¢ =+1 in (4:5) and for d we have the values — (1 —%a),
—(1—a), a, +1, (14 %«) respectively.

We denote by I', I, I; the domains obtained by deleting from I, I,, I, the regions corre-
sponding to Ly, L3, Then L;, and L;, are the pear-shaped domains, bounded by the
z axis and the lines surrounding E, and E,, shown in figure 8. Let L, = Lj,+Lj, and let
L, denote the reflexion of L, in the imaginary z axis. The curve D,Q,, being part of the
boundary of Lj,, corresponds to a curve D,@, in the o-plane where ¢ = cosh™! (z/f).

D,Q, is given by

o=t+ir—4 cos™! [ cosech (2a71¢) {rsinh 2(a~141) t+77!sinh 2(a~1—1) &}], (4-6)
where t = #0, 7 = (1—a) /(1 +«) and 0<¢<#, where {, is given by tanh#, = acoth (¢714).
Then D,Q, is given by

2z = —sinh 2¢[{coth? f—2a coth ¢ coth (2a~1f) + a2}
—i{2a tanh £ coth (2a71¢) —a2—tanh?£}], (4:7)
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 609

where 0<¢<¢;; Q, has affix fcosh ¢, et and lies to the left of E,. The boundary of L] leaves
D, at an angle of 27 with the real axis, and intersects the real axis at ¢, and @,, at right angles.
The domain L, has similar properties, and P, has affix fcosh¢,; L, is a particular example
of the domain T, of I, § 3.

Ix

F QmD
B\ o /D,

I i
3z G]
n n
A BI C] D] El
Ficure 3. z plane. Ficure 4. A plane.
e

F 4 £
G, c,‘:

2
I
G o| 2

777777770 e
F ol 7
FiGure 5. p plane. Ficure 6. ¢ plane.

A

Further consideration of the { plane

We obtain the asymptotic expansions of the solutions of (4-2) by the application of a
certain theorem, theorem B, proved by Olver (19545, §5). To apply this theorem it is
necessary that f;({) in (4-2) should be a regular function of { in an open simply-connected
domain D; if D extends to infinity we require that f,({) = O(| {|~¥*) (x>0), as | {| =00
in D (Olver 1956, appendix). We also require that the distance between the boundary lines
of D should not shrink to zero as | { | =00 in D. We are therefore not able to apply theorem B
to (4-2) in the domain I, as it stands, since the distance between the boundary curves of
I, tends to zero as | { | —o0 in I,. To obviate this difficulty a Riemann surface on the z plane
is constructed to correspond to the { plane cut in a certain way described below.

The sector 0 <arg { <4 corresponds to L, and the pear-shaped domains which we denote
by L;,j=1,2,..., and which are considered as lying below L, and reached by successive
clockwise rotations about z = 1 across 4,,B,,; for completeness we write L, = LY.

75 Vor. 249. A.
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610 R. C. THORNE ON THE

To the sector 1m <arg { <4w corresponds a z surface consisting of an infinite number of
sheets I3/, j = 1,2, ..., say, lying below I,, reached by successive clockwise rotations about
z = 0 across @, F;,. The domains corresponding to L, and L] are deleted from I;7. Let
I9=1I,—-L,=1I,—L,—L,. Then the I;/ are linked across the cut Q,,F,, so that if 437,
B3 ... denote the points 4,, B,, ... in I/ then F,,Q,,=F9,Q!, in I? is joined to F;1Q;!
in I7! and so on; I}/ is not connected with L;7. -

The sector 27 <arg { < corresponds to the zsurface consisting of the sheets I, j = 1, 2, ...,
which lie above I, and are reached by counterclockwise rotations about z = 0 across the
cut @, F,. The domains corresponding to L, and L are deleted from IJ.

Finally, .#{<0 corresponds to a combination of sheets, J%, J&/, L, j=1,2,...; J, and
J. are cut in exactly the same way as I, and I; they lie above I, and are joined to I, along
D.C,B,A,. Thesheets J¥/ (j =1,2,...) are related to J in exactly the same way as I}/ are
related to I. L} (j = 1,2, ...) are reached by successive counterclockwise rotations about
z =1, and since L! lies in J, we have J9 = J,—L!. The domains corresponding to L,
and L, are deleted from J£/. '

o0
Then the z surface, D,— 3 (U+Ji+Li),

| j==e
is mapped on to the whole { plane with the three cuts
{=terdm, (m)i<i<oo, —oo<{<—{En(1—$a)};

and z=z({) is a regular function of { in D, and D, is an open simply-connected domain in
which { = 0 is an interior point. We note that to obtain a z surface corresponding to the
whole { plane, it is necessary to exclude L, from all the sheets of D,

The behaviour of f;(C) in D,

The function f, () is given by (4-3). From the results of § 3 (see (3-7) and (3-8)) we con-
clude that f,({) = O(|{|~?) as |{|—>c0 in D,. The point z = § corresponds to { = 0 and

-0, ‘
e (1—f2]2)} ~ (2022 1+, L+ 4,02+ O(E9)}
nE /74 NI /1,6 4-8
where dlz—ll—o(i,iz) (17“4—“—), d2=4df—-11—;(%%~) (L@ﬂ‘_) } (48)

By direct calculation it can then be shown that J1() = constant+ O({) as {— 0, and hence
S1(€) is regular throughout D,.
Let us now define a domain D; = D, —X,,—X,,, where X, X, are the strips

X0 Rt (3na)t—0, | SLetin| <8,}
Xy A< —(n(l—Pts, || <

Then X, gives a strip on the lower side of the cut z = », —f<x<f and X, and X,, give
strips around the boundary of L, together with strips around the boundaries of IJ, Lj, JJ.

(49)

The application of theorem B in Dy
It is now necessary to define the domains D;, D,, D, of theorem B. If the points a,, a,, a,
of this theorem are taken to be the points { = +00, { =00 e~#, { = c0 e#7i in the { plane,
then Dy = D; = D, = D;. Then we conclude from theorem B that there exist solutions of
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 611

(4-2) which, for large positive values of #, have asymptotic expansions which are in terms
of Ai (u4(), Ai (ut et (), Ai (ute-#1{). Matching the Legendre functions to the solutions
of (4-2) in the usual way, we derive

por L) s S B0 £ 5. o

()~ D ﬂz) (aitertng 3 B cmA WG S EQ) ()

where C, and D, are functions of z only and E,({) =1, »
¢
F(Q) = 303 A0 B0 —El(0)ds

¢ (4-12)
En©) =—3FO+] _AOFO dtta,

and ¢, s>0 are integration constants which we suppose are real. The asymptotic expan-
sion in terms of Ai (u? e¥71{) will be relevant for a Legendre function which is bounded at
infinity in J,, but this function is not of interest here.

We now determine C, and D,. Let z = £4i0, where f<x<1; then the point z lies on
B,A,, and arg (z—1) =7 and {, E,({), F,({), Ai(43(), e mn P"m( z) are all real. Hence

z47 2y

from (4'10) Cu — edmmi C;, (4:'13)

where C, is real. For this same value of x let x—1—0, {—>+c0. Applying (2:7), (2-10),
(3-8) and Olver (19540, (4-3)) to the expression (4-11) above, we conclude that D, is a
real quantity, where

D, =~ exp (ymri + i) D, (414)

We now show that C, = D, From Watson (1944, p- 80) and Olver (19545, (4:2)) we have

that ’ 1 ‘ ‘

Ai (te ¥m) = Ai (2) +7Tﬁ edmi 1 Iy (3eh). (4-15)
For ¢ real the functions Ai () and I;(3#}) in (4-15) are real. Substituting (2:10), (4-14) and
(4-15) into (4+11), and multiplying throughout by e~37i we derive

Cy etmmi {C, Pn(z) — Pym(2)} ~ Dife#m18, + Sy}, (4-16)

where C| and C, are real constants and S, and §, are real asymptotic expansions. On B, 4,
we have eximi Pim(x 1 j0) = P#m(x). If the real and imaginary partsof both sides of (4:16)
are separated for z = x+10, an asymptotic expansion for P, ™(x) is obtained. This expansion
is identical with that derived from (4:10), using (4-13) and (2-2), except that the coefficient
C, isreplaced by D, Since such asymptotic expansions are unique, we conclude that C,, = D,

To find C, we let z—>1—0in (4-10) and (4-11). Using (2:7), (2-10) and (3-8) we derive

T‘“@zlm(p) ~Cif3 (k) S ()
Sttty ()~ {3 (b)) e

75-2
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612 ‘R. C. THORNE ON THE
where C,, =,/(2amu?). C,; the constants a, are given in (4:12) and g, = lim {~¥F,({); this
§—>+

limit exists by virtue of lemma 2 of Olver (19546, p. 319). Since a, = 1, we conclude that

(3 (5 L))~ 52

s=1

where 7, involves the constants ay, &y, ..., &; By f15 --v» foeq if 7= 25, and &g, @y, ..., &;
Bos P15 -5 B if r = 25+ 1. The constants «; (j=>1) can be chosen arbitrarily. Logarithms of
(4-17) and (4-18) are now taken and the resulting expressions added. We then set y5, = 0
(compare (3:17)). Under these circumstances «; is specified in terms of o, §; ( = 0, 1,2, ...,
s—1), and C;,, = A, defined in (3-17). Hence

e—%mnipr;m(z)N{ggzlzii;}%(zfgﬁz) { Z(tuﬁg)sg ;gg) Ai’ (ugg)sz: s(C)} (4-19)

_ r FAi(de-trig) 2 E
cbmisin Qn(e) [ (i) (25

+ C—%m

Ai’ (Zﬁ §—§m C) z (é)} (4:,20)

u

The expansions (4:19) and (4-20) are the desired result. The functions £ ({) and F({)
are given by the formulae (4-12) in which the integration constants a, are specified by the
relation

Jm

go(%s u”“) N/(2ﬂ)()mr(m){%%}i’ (421)

Properties of the asympiotic expansions. The expansions (4:19) and (4-20) are uniformly
valid with respect to z in D;. Thus they are valid throughout the z plane cut from -1 to
—oo except for (i) the domain L] surrounding the point z=—1, and (ii) the strip
—8,<SIz<0, | Zz|<f+4,, 6,=6,(8)>0. In both these regions asymptotic expansions
can be obtained by use of the continuation formulae (2-12) and (2-13). If z lies in L, the
expansions hold for any value of arg (z—1). If z lies in the cut plane, but does not lie in the
strip (ii) mentioned above or in L, or L, the expansions hold for any value of arg z.

The significance of the domains L, and L, can now be seen. Inside L, the value of | P, ™(z2) |
becomes everywhere exponentially small as u—>oo for all values of arg (z—1). Outside
L, the value of | P;™(z) | becomes everywhere exponentially large as u—o0 except for z =
and | x| </, when P;™(x) is bounded and oscillatory, the zeros of this Legendre function
for —f<x<f corresponding to the zeros of Ai («¥() for { lying in the interval D, B, in figure 6
(see (4:22) below). As u—co the value of | Q;™(z) | becomes exponentially large or small
according as z lies inside or outside L, and L, except when z = x, |x | <f, when Q,™(x)
oscillates boundedly (see (4:23) below). Let z* = z e, where ris an integer and | arg z | <,
and z does not lie in either L, or in L] ; we suppose that z* is reached from z by crossing the
cut F,Q, or F;,Q,,. Then the values of | P;”(z*) | and | @,™(z*) | become exponentially
large and small respectively, as u—>co. This behaviour is borne out by the continuation
formulae (2-14) and (2-15). Both Legendre functions are exponentially large as u—o0
for z in L. The function P,™(—z) is the only Legendre function which is exponentially
small as —o0 for zin L.
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‘ Expansions for the Ferrers functions
An expansion for P,;™(x) is immediate from (4-19) and (2-2). For Q7,”(x) we use (2-3)
and (4-20) ; we note from Olver (1954¢, p. 365) that

Bi({) =1Ai({)+2etm Ai ({e-#m),
We conclude that '

P;m(x)N{P(n-—mH)}*(x 4 )*{Ai(u*é)z +(6) AT (u*g) 3 s(o}, (4-22)

In+m—+1)) \x2—p2 ub o s
2~ m Cn—m+1)\¥/ 4 \¥Bi(W¥) 2 E,({)  Bi' (u¥) 2 F(L
i~ (s B0 SEO 0 S0y

The expansions (3-28) to (3-31) can be derived from (4-22) and (4-23) and the asymptotic
expansions for the Airy functions (Olver 1954¢, appendix (A 6) and (A 8)).

It is not difficult to deduce the form of the Airy-type asymptotic expansions of the
Ferrers functions P, ™(z), Q,™(z). With these functions the z plane is cut along the real axis
from +1 to +oco0 and from —1 to —oco. The same z-{ transformation (4-1) is used. We
denote by J, this new cut z plane and denote by J, the domain obtained by removing from
3, the domain L. Then we can easily deduce from the nature of the domains in figures 5
and 6, that J; is a domain in the { plane which is symmetrical about the real { axis. If we
examine appropriate Riemann surfaces in the z plane, we can show that the Airy-type
expansions derived for the Ferrers functions P;™(z) and Q;™(z), by the application of
theorem B of Olver (19545), are valid uniformly with respect to z, as u—00, for all values
of z in the cut z plane, except for z in L. Thus the expansions for the Ferrers functions are
valid in a domain larger than the domain of validity of the expansions for the functions
Pyn(z), Qa7 (2). | |

Formulae for the functions E ({) and F,({)

These functions are defined by the iteration formulae (4-12). The integrations in (4:12)
are difficult to perform but we can obtain explicit expressions for these functions in terms of
the coefficients 7;({) derived in (3-9) and (3-21), by a method used by Olver (1954c¢, (6:6))
in obtaining similar functions in the asymptotic expansions of Bessel functions. Hence we
derive

25 25+1
Es(g) :rgobrc_%sns—r(g)’ gil;.‘s(g) = rgoarg-gr 23—r+1(§)3 (4'24)

where a,, b, are certain constants which appear in the asymptotic expansions for the
functions Ai ({) and Ai’ ({) for large values of { (Olver 1954¢, (6-3)).

Expansions for the derivatives

We may differentiate the expansion (4:19) term by term. If we write

#(C) = (Z—E—{Jﬁz)t (—;%—1 3%)*, (4-25)
we obtain

e—imﬂiédzp;m(z) N_{%%}%‘_i_;} ¥ (z ){Al (u 0 2 sgo ;gg) +ub Ai’ (ui‘é’) z (g)}’ (4 26)
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where w0 = (Z‘T—fW(_g) (4-27)

Gi(§) = (O E(D+E(Q) +LF(0), Hi(Q) = E(§) +x(0) Fa(Q) +Fi-1(C),  (4-28)

and x(0) Eﬁ,((g)) _ 4"‘2(22;‘612 {¢(§)}6.

Similar expansions can be derived for the functions @;™(z), P,;™(x), Q”(x). The functions
(L), ¥(£), x(£), G;(¢) and H,({) are regular in the same regions as z({), and the expansion
(4-26) is uniformly valid, as —>o0, for z lying in the same domain as in (4-19). Finally,
from (3-32) and (3-34) we have

46,0 =~ 0LV, a0, B = 36l VTR,

5. EXPANSIONS FOR THE LEGENDRE FUNCTIONS IN TERMS OF BESSEL FUNGTIONS

The expansions obtained for P,;™(z) and @,™(z) in §4 are uniformly valid as «—oo0 with
respect to z in the z plane cut from +1 to —oo except for z lying either in the domain L,
encircling z = — 1 or in the strip | 2z | <f+0;, 0> £2z> —0, (§,>0). In this present section
we apply theorem E of the preceding paper (Thorne 19575; which we refer to as II), to
obtain expansions for P;™(z) and @,™(z) which are valid both in the regions of the z plane
in which the Airy-type expansions of §4 are valid, and also in the strip mentioned above.
These expansions are in terms of modified Bessel functions of large order.

Before proceeding to compare the Legendre equation with the Bessel equation II, (1-4),
we first show that it is necessary to use here the parameters %, a introduced in (1-3). In II,
the transformation II, (2-3), was applied to the equation II, (1-1), to bring it into the form
IT, (3-1), in which equation the independent variable is ¢. It was then proved in II, §5,
that the solutions of IT, (3-1), have asymptotic expansions in terms of Bessel functions which
are uniformly valid with respect to ¢, as u —00, in unbounded regions of the complex ¢ plane
if and only if the corresponding Airy-type expansions for solutions of II, (3-1), are uniformly
valid as | {| +c0 in the sector | arg (—{) | <£w in the { plane, where { is the independent
variable which appears in the Airy functions (see II, (2-7) and (2-9)).

In the case of the Legendre functions we have shown in §4 that the point |z| =00
corresponds to the point { = oo e¥7i, and it was proved in the earlier paper (I, §5) that the
Airy-type expansions for the Legendre functions are uniformly valid with respect to z for
| z| =00 and thus for {00 e?7 only if we put the Legendre equation (1-1) in the form (1-3)
with the parameters u = n+4, o = m/u. Consequently we deduce from II, §5, that it is
necessary to use the parameters #, « in order to obtain Bessel-type expansions for P, ™(z)
and @;™(z) valid uniformly for unbounded | z|.

Since the coefficient of «?w in (1-8) is (z—1)~2{}a%+ (z—1) O(1)} as z— 1, the parameter
a which we have to choose in IT, (8-1), is identical with that given in (1-3), namely, @ = m/u
(see IT, §2). Finally, comparing figure 2 of IT with figure 5 in this present paper, we see that
if we combine the z-p transformation in (4-1) and the p-¢ transformation in II, (2-3), and
(2-8) the domain I, say, corresponding to I’ in the z plane (§ 4), will lie wholly with Z¢<0.
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Since it is more convenient to consider the half-plane #¢>0, we change the p-¢ transforma-
tion of II, (2-3), and set
z [(22__ 42 ¢ a2\ ¥
[LeBaem—p=[ (14+%) & (51)
. B i
that is,

atanh'l{%ﬁ}—tanh“l{@} =p= alni{a+*/(;2+a2)} —J(B+a?)

: (5-2)
= a.cosh™! 1;—‘—~/(152—|—052).

As in (4-1) we have p = —§+ }ian; this differs from II, (4-8). Under the transformation
Y=wz"1% 2 '=dz/dt, the Legendre equation (1-3) becomes

(:(l;—tf={u2(l—l—;—‘5)”—4—t2+g(t)} Y, (5:3)
where g(t) = (£+a?) (22—1) {z%(4a2—1)+(1 —ac4)}+ 2 — 402 (54)

4t2(22—-ﬂ2)3 4(t2+a2)2'

This value of g(#) is calculated from (4-8) and II, (2-12).

The domain 1;
Using the logarithmic form of (5-2) we deduce that as z—>1,

pZCZtZ
z—1~iprexp (207 ~ L1+ 0(), (55)

(compare (3-8)), where p is given in (2:17). Using the logarithmic form of (5-2) again, we
find that .
nd that as | z| >0 Zm Y~ Ce, (56)

where InC =In{f+Inr and Inr = alnf-1(1+a). In §4 we have deéscribed the domain
I, in the p plane corresponding to the domain I, From the transformation (6-2) we deduce
that I, is a domain consisting of a strip which lies wholly with %¢>0, and which is sym-
metrical about the real ¢ axis; I,, and I}, lie in #¢>0 and I,, and I}, are the reflexions of
I, and I, in that order, in the real # axis. As | ¢ | o0 the lines ,F, and C,G,are asymptotic
to the lines St == and = {n respectively. The points 4, (z=1), H, (z=+o0),
B, (z =f+10), By, (z = f—i0) are transformed into the points ¢ = 0, = 00, ¢ = i, ¢ = —ia,
respectively. The points C, (z = 0), D, (z = —f+1i0), Q, (z = fcosh ¢, em), P, (z = fcosh ;)
become the points £ = ip;, ¢ = ip,, ¢ = ip,, t = a X 0-66274 ... respectively, where p,, D25 Ps
are the solutions of the equations

Hr—a) = J(pi—a?) —a| cos™ (afp) |,
1(1—a) = J(p3—a®) —a|cos™! (a/p,) |,
m(1—4a) = J/(p§—a?) —a|cos™! (a/ps) |-

The constant « is fixed in the range 0 <z <1, but if we let a— 0, then p, > ir—0, po—>m—0,

ps—>m—0 and if a—1, then p,—>1+0, p,—~>1-+0, p;—>,/(2+1) =2-2168..., where
f3 = 20288 ... is that solution of the equation tan #; = —¢, for which 7 <¢,<.

(5:7)
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The domain L;, becomes a strip Lj, in 2¢<0, #¢>0, and Lj, becomes a strip L, in
Zt<0, #t<0. The Bessel-type expansions derived in this section are not valid in Lj, and
L;,. The domain L, is transformed into the domain &;, described in II, § 2, surrounding
¢t = 0. Ifwe consider a domain J (asin §4), identical with I, and reached by a single counter-
clockwise rotation around z = 1 crossing 4,B,C,D,, then J; is the reflexion of I; in the
imaginary ¢ axis. Let Bj,, Ci,, D;, be the points in J, corresponding to B,,C,,D,, in I
As far as the z-t transformation is concerned we may now eliminate the cut D,,C,,B,,4,B,C, D,
in the ¢ plane, and this corresponds to joining the lower side of the cut —f<z<1 in I
(namely, 4,B,,C,,D,,) with the upper side of this cut in J (namely, 4,B,C,D;). Let
T, =I,+J;, where T, is cut along the lines D,@, and D,,@,,, given by z = it", ¢” real and
p2<|t"|<p;. Then T, is an open simply-connected domain in which ¢ =0, ¢ = +ix are
interior points. Further, T, extends to ¢ = 400 and the distance between the boundaries
of T, does not tend to zero as | ¢ | =00 in T,. Then z=z(¢) is a regular function of  throughout

T,

F
zig/—
E’/4,; > G

g io_/3 '
AP H
Bl,/—ia
G
ET7 R G
Q,
K

Ficure 7. ¢ plane.

From (5-4), (5-5) and (5+6) we conclude that g(f) = O(|¢|2) as | ¢| >c0 in T}, and g(¢)
is a regular even function of ¢ throughout T, except possibly at the points ¢ = +-ix. How-
ever, from (5-2) we conclude that as z— f+1i0, {—~ix and

JE) _ g1 10y T2 0(TY), (58)

where T = /(£2+02) and a; = 3a~2(— 24+ 1+4%). Substituting into (5-4), we can show
after some calculation that g(¢) is regular at ¢ = +ia.

The change of the limits of integration from ¢ = —izin II, (2-3), to ¢ = iz in (5-1) does not
affect the application of theorem E. Since g(#) is an even function of ¢, the function B (?)
in II, (3-5), is an odd function of ¢ and 4,(¢) in II, (3-6), is an even function of ¢. Hence,
replacing the lower limit of the integral in II, (3-6), does not alter the values of 4,(¢) and
B (t) for s=>0. ‘

We have now shown that all the preliminary conditions for the application of theorem E
to solutions of the equation (5-3) in T, are satisfied. We take T, to correspond to the domain
D of theorem E and define a domain T} to be the domain obtained after removing from T,

the two strips @t <8, py—0<|It|<ps (59)
We can take T to correspond to the domain D’ of theorem E since all the conditions of

theorem E are satisfied in domains reached by crossing the lines @, F,, F},Q,,, @/ F;, F1,Q1;
we used a similar argument when discussing the domain Z; in §3. Then the domains D,
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LEGENDRE FUNCTIONS OF LARGE DEGREE AND ORDER 617

and D, are identical with T,. The two strips in (5-9) correspond to a strip around the
boundary of L.
Applying theorem E and using the relations (2-7) and (2-8), we conclude that

Pine) ~ B, (5E5) [1utan 3 40 o) § B, (510)
Qi) e B (GE) Koy 3 40 K S BA) oy

where 4,(?) and B (¢) are gi\}en by the relations
a0 =1, B =5(1+5)" [ fe0) 40—t 40 - 4@ (1+5) ", (512)

Ayn(t) =—3BL(0 +3;B.(0) +3 fogw) B)dv+a,, (s>0), (513)
with g(¢) as given in (5-4).

We suppose that the integration constants ¢ in (5-13) are real. The coefﬁcmnts E, and
F,in (5-10) and (5-11) are now derived in a manner similar to that used in § 4 in the deriva-
tion of C, and D,. By examining the expansions (5-10) and (5-11) for a point R,, say, on 4,H,,
and taking the integration in (5-12) along the lines B,4,, 4,H, we can show that E, and F,
are real functions of . Now taking R, to lie on B,4, we can conclude that £, = F,. Then
letting R,— A, we derive

Ln—m+1) (pe\™ _ g (4—l04 b1 . :
I‘(n+m+1)(2m) Eu(“o PRI ) (5:14)

(&) ~Fifo R U W ), | (5-15)
where a, = A,(0), b, =alim{t~1B(t)}. (5-16)
: -0 _
Hence, using the methods of § 4, we deduce that

pomi oy [LO—mr Do\ 2 A | In(ut) 2 B,()

Pn (Z)N{I‘(n+z—|-l)} (22__0:5’2) {Im(ut)sgu u + u sgo uZS }’ ‘ (5'17)
— ¥ 2 ’
gt ~erm (Rl R Ky 3 Al Kal) S B (1)
= (a, b <n+m+1>

where 8 )~ ) (6w (519)

and a, and b, are given in (5-16). The z- relation is given in (5-2).

These expansions are uniformly valid with respect to z as u—0c0 throughout the z plane
cut from 41 to —o0, except for the pear-shaped domain L, surrounding the point z = —1.
To obtain expansions valid inside L, we may use the continuation formulae (2-12) and
(2-13). From the known behaviour of the Bessel functions 7, and K,, over the ¢ plane (see
Olver 1954¢), we may deduce properties of the Legendre functions over the z plane as
u—>00 ; these properties have been given in §4. Ifm is a positive integer we may deduce the
expansion for P7(z) immediately from (5:17).

76 i Vor. 249. A,
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Expansions for P;m(x), Q,™(x)
Ift+ corresponds to the points z = x-4-i0, where xis real and —f<x< 1, then ¢4 = e7ir
where 7 is real. Then we can write

A(t£) = (1), FiB(t+) = %(7),
I (ut+) = ettmmi J (ur), K, (utd) = imwcosec ma{e™dmmi J_ (ur) —e*¥mmi J (ur)},
K (ut) e K, (ut—) = —a¥ (ur).

Hence we deduce for these values of x,

P;m<x>~{£§Z;Zi}§}*(ﬁ:§) o) § 40 Tl 800
s () e S H T 2, o

where acosh~ {ﬂj(l )} cosh‘Z,-—accosh“%—J(aﬂ—ﬂ).

Determination of the functions A(t) and B(t)

We can obtain B,(¢) by direct integration from (5-12). Thus, noting that the lower limit
in the integrals gives a zero contribution since g(f) is bounded at ¢ = ix, we derive

2(202—382)  tz{z2(202—3) +3(1—a*)}

By(t) = 24(£2+o?) - 24/572(22’___/92)’} (t2+ac2)* (5-22)

The derivation of the other functions by this means is not practicable, but we can obtain
expansions for the functions in a manner similar to that used in § 4, and Olver (1954¢, §6).
Let z be a fixed point in the half-plane #£z> 0 not lying near z = £, or near the real z axis.
Then the expansions (5-17), (3-11), and II, (4-7), are all valid. By substitution we deduce

ha
o SLO_ 5 UG SAD | STED S (1, )0

<o us‘ <o ms <o u2s tZ y2s+1°

Equating coefficients of #~ and using the identity
UpVo— Ui+ -+ Up ¥y =1 (s21),
from Olver (1954¢, (2-24)) we obtain by direct addition

Af8) = 3 (=) TED) Ty ),
’ (5-23)

a2\ ¥ 25+l
(1+%) B0 = 2 (—2) " UEfe) Topia-,©).

We deduce from the principle of analytic continuation that the expressions (5-23) hold
throughout the region of validity of the expansions (5:17) and (5-18).
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Expansions for the derivatives

21 2 3

If we write ¢, (t) = (;2__!__./5’2)* _ (zzilg;;) ) (5-24)
ten  LPomia) [ty o) § GO L S 2O (sas)
where ¢1 (t) = m—('t—) ) (5°26)

C.(t) = ty(8)+tu(0) A0 +4(1+5) B,
) (5-27)

D{t) = 4,(0)+Bi-s() =1 Bor(8) +12(0) Bocs (1)
where X1 (t) _ ¢i (t) . 1 _‘22(22— 1) {¢l(t)}6.

0 4(#2+a?)
Similar expansions can be derived for the other Legendre functions. The functions ¢, (¢),

x1(8), ¥:1(2), Cy(¢) and D(#) are analytic in the same regions as z=z(¢), and the expansion
(5-25) is uniformly valid, as u—o0, for z lying in the same domain as in (5:17).

6. PREVIOUS RESULTS AND CONCLUSION

It was mentioned in §1 that no expansions have been developed previously for the
Legendre functions of large degree n and order m. Numerous expansions have been given
for the Legendre functions of fixed order (m) and large degree (n). All these expansions can
be obtained from certain expansions obtained by Olver (1954a). The functions

(sinh #)* P;m(cosh#), (sinh#)}Q;™(cosht)
are the solutions of the differential equation

2 ,
=+ S+ 1) (o 1) (6:)
where « = n+ . This equation is of the type II, (7-1), and the expansions for the Legendre
functions are in terms of the Bessel functions I,,(ut) and K,,(uf). The leading term of the
expansion corresponding to P;™(x) has been given previously by Szegé (1939, (8:21-17)).
It is not difficult to see the relation between these expansions and the Bessel-type expansions
of §5. If we let «—0, then the z-¢ transformation (5-2) becomes ¢~ cosh~!z, and the
leading term of (5-20) is the same as the term given by Szegb.

The Legendre functions of large degree and order have properties similar to certain
hypergeometric functions G,=7¥F(a,, b,; v+1,7) considered by Cherry (1947, §2, 1949,
19504, b). In these functions £ is fixed, and |v|—>o00 with 2a, = v—g-+/{?(1+28) + 52},
2b, = v—f— J{v?(1+2F) +p?%; these functions appear in gas-flow theory. The equation
satisfied by G, has, for large values of v, a form similar to (1-3) for large «. Using the method
of steepest descents, Cherry (1947, 1949) has derived asymptotic expansion for G, in terms
of exponential functions; these may be compared with the expansions in § 3. Cherry (19504, b)

has also given expansions which are valid at the transition point of the differential equation
76-2
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620 R. CG. THORNE

satisfied by G,, corresponding to the point z = £ in (1:5); these expansions are in terms of
Bessel functions of large order and are derived by the method described in II, §7. We
note that if Cherry’s method were applied to the Legendre equation, the resulting Bessel-
type expansions would have the same domain of validity as the expansions of § 4.
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